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ABSTRACT

A modified variational algorithm, previously proposed in meteorology, is presented for the interpolation of
oceanic hydrographic and velocity data. The technique is anisotropic and involves a variational approach that
allows revealing of the spatial structure in its application. Being a part of the variational family of algorithms,
the method is quite general in that it allows one to set dynamical constraints, and weighting functions, applicable
to the problem of interest. This flexibility is illustrated by using the nonlinear terms of momentum balance
equation as constraints. The inclusion of these constraints appears to assist in the resolution of narrow jets in
the flow fields. The method is applied to data from two different regions of the ocean: Lagrangian drifter data
from the northwest Pacific and hydrographic data from the Scotian Shelf. Each dataset presents quite different
scales, physical processes, and data types. The resulting flow fields are compared with results determined from
traditional optimal interpolation, and advantages of the proposed method are discussed.

1. Introduction

Over the past decades variational methods have been
shown to have clear advantages compared to statistical
methods for several different types of problems. Sasaki
(1955, 1958, 1970) was the first to propose the appli-
cation of variational principles rather than optimal in-
terpolation for objective analysis (Gandin 1965). Dif-
ferent variational algorithms have been successfully ap-
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plied in meteorology (e.g., Lewis 1972; Penenko and
Obraztcov 1976; Navon 1981). Code for some of these
algorithms is available for application (Legler and Na-
von 1991).

Despite their formal difference, statistical and vari-
ational methods have the same origin. Both are based
on the least squares method of fitting model to data.
McIntosh (1990) has shown that when the correlation
function is known in theory, the optimal interpolation
method (Gandin 1965) is preferred. In general, however,
the correlation is not known in theory and is often dif-
ficult to estimate, even in practice. This means that the
correlation function often has to be estimated, or
guessed. The variational interpolation method should
give smaller errors in interpolation, as it is less sensitive
to the chosen correlation space scale. It is probably this
feature of the variational method that guarantees suc-
cessful application of the variational approach for rather
different problems (Navon 1981; Hoffman 1984; Legler
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et al. 1989; Panteleev and Yaremchuk 1989). The key
advantage of these variational algorithms is that they
can explicitly include dynamical constraints in the in-
terpolation algorithm.

An increase in computational power and the oppor-
tunity for optimal assimilation of different sources of
the data stimulated development of three dimensional
algorithms based on the variational principles. These
algorithms were found to be very useful in operational
meteorology. For example, both the European Centre
for Medium-Range Weather Forecasts (ECMWF) and
the National Centers for Environmental Prediction
(NCEP) use a 3D variational technique for reanalysis
(Pu et al. 1997). Application of three dimensional var-
iational interpolation schemes helped to define the struc-
ture of the large-scale circulation in the Labrador Sea
(Provost and Salmon 1986) and mesoscale currents in
the northwest Pacific (Panteleev 1990).

The application of the technique of optimal control
(Le Dimet and Talagrand 1986) permits the inclusion
of more complicated time-dependent dynamical con-
straints (Griffin and Thompson 1996; Nechaev and Yar-
emchuk 1994; Nechaev et al. 1997) in the interpolation
scheme. Unfortunately, the proper use of optimal control
and three- dimensional variational techniques requires
not only large amounts of data and their uniform dis-
tribution in space, but that the data must also correspond
with the appropriate dynamical constraints. In the ab-
sence of sufficient corresponding data, these methods
became ill-conditioned and can provide false results,
because a substantial number of degrees of freedom
defined by their constraints remain undefined. Such a
situation is quite common in oceanography, where ex-
tensive three dimensional and time-dependent obser-
vations are difficult to obtain.

At the same time, the underlying dynamics of many
oceanic problems can be identified even if the observed
oceanic circulation is often quite complex. In such a
case, it seems natural to specify the length and/or time-
scales for the dominant processes and create an algo-
rithm appropriate for the available data. Variational ob-
jective analysis of the pseudostress over the Indian
Ocean carried out by Legler et al. (1989) (see also Ra-
mamurthy and Navon 1992) and mesoscale velocity
fields observed in the northwest Pacific during the sum-
mer of 1987 (Panteleev and Yaremchuk 1989) are ex-
amples.

Here, we present a relatively simple two-dimensional
variational algorithm that we use to stimulate the upper-
layer ocean circulation. Although rather similar to the
methods proposed by Legler et al. (1989) and Panteleev
and Yaremchuk (1989), it also has some differences that
allow the inference of anisotrophy in the interpolated
velocity fields. This feature could be quite useful in
some applications. As an illustration, we applied the
proposed algorithm in two situations: 1) the definition
of the surface circulation in the northwest Pacific based
on the drifter measurements and 2) the definition of the

surface circulation on the Scotian Shelf from ‘‘esti-
mates’’ of the upper-layer currents, using dynamical ve-
locities determined from density profiles.

2. Variational algorithm

To define the stationary, upper-layer circulation from
estimates of horizontal velocities given on an irregular
grid, we search for a two-dimensional velocity field that
minimizes the function F that is the sum of the indi-
vidual constraints for the problem:

4

F 5 f , (1)O i
i51

where f i defines some ‘‘weak’’ (according to Sasaki
1970) constraints:
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Here, V is a space domain and gi(x, y) are components
of the weight function. A linear operator A matches the
solution to observed velocities. Most of the constraints,
Eqs. (2)–(5), are similar to ones used by Legler et al.
(1989) and Panteleev and Yaremchuk (1989).

The first constraint (2) brings smoothness to the mod-
eled velocity field and essentially defines the spatial
scale of the velocity field. Although Eq. (2) is not in-
variant to rotation, this form for the smoothness term
is commonly used because of its simplicity (Thacker
1988; Nechaev et al. 1997).

The second term, Eq. (3), is a kinematic constraint
that forces the resulting velocity field to be nondiver-
gent. Although horizontal velocities may converge in
the upper mixed layer, for instance because of a non-
uniform wind stress field or isopycnal motions at bar-
oclinic fronts outcropping at the sea surface, the cor-
responding 3D circulation plays a secondary role and
is composed of ageostrophic velocities, which are typ-
ically much weaker than geostrophic ones (e.g., Uchida
et al. 1998). The third term naturally expresses the at-
traction to the original data and provides a major input
into the algorithm.

The last term minimizes the nonlinear terms of the
momentum equation and has rather clear mathematical
and physical meaning. It is proportional to the along-
stream velocity gradient, and its minimization is equiv-
alent to the application of an anisotropic smoother. This
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FIG. 1. (a) The variation of the scaled functional F with respect to
the number of interations. (b) The variation of the scaled gradient
with respect to the number of iterations.

feature of f4 is particularly useful in the description of
narrow meandering jets and their smoothing without
creating large errors in the cross-jet scales and absolute
values of the velocities. From the physical point of view,
the minimization of f4 decreases the ageostrophic ve-
locity component, which, according to results of Le
Traon and Hernandez (1992), Ichikawa et al. (1995),
Sheng and Thompson (1996), and others, is weak at the
mesoscale.

The choice of the weight functions gi is a key step
in the application of the method. According to the stan-
dard formalism of the least squares model of fitting data
(Thacker 1988, 1989), the minimum of F will corre-
spond to the most probable state, whereas the weights
gi represent the covariances of the corresponding phys-
ical values. We believe that all the fields are d-correlated
with unknown means, so the weight functions gi become
the error covariance of these fields. Thus, the best sta-
tistical knowledge will provide the most probable state
that can be obtained under the chosen constraints and
available data.

If the statistics are unknown, we need to define the
weight function gi based upon prior experience and
physical intuition. Usually such knowledge can only
capture the principal features; therefore, it seems logical
to conduct numerical experiments to see if the model
outcome fits sensibly with our assumptions.

We introduce the weights gi as

2 2g (x, y) 5 [U(x, y)/L (x, y)] /k , (6)1 1

2g (x, y) 5 [U(x, y)« (x, y)/L(x, y)] /k , (7)2 div 2

2g (x, y) 5 [U(x, y)« (x, y)] /k , (8)3 data 3

2 2g (x, y) 5 [U (x, y)/L(x, y)] /k , (9)4 4

where U and L are characteristic velocity and spatial
scales, «div is the nondivergence error, ranging between
0.05 and 0.1 (Panteleev and Yaremchuk 1989), and «data

is the prior data error. Because of subjectivity in the
definition of U and L, we incorporate additional coef-
ficients, ki, and assume that the correct choice of ki has
to provide integral errors,

2s 5 4 (=u) dVdiv E[
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in agreement with our physical knowledge. As will be
shown later, the proposed variational algorithm is rather
insensitive to reasonable changes, by up to two orders

of magnitude, in ki. This lack of sensitivity is consistent
with McIntosh (1990), mentioned in the introduction.

The finite-difference analog of F was expressed in
spherical coordinates on a C grid (Messinger and Ar-
akawa 1976). The rigid boundaries were taken into ac-
count by adding zero velocity ‘‘data’’ for the points
occupied by the Asian continent and different islands.
These data were incorporated into f3 with a correspond-
ingly large weight, gi. For the minimization of F, a
limited memory quasi-Newtonian large-scale algorithm
was applied (Gilbert and Lemarechal 1989).

We illustrate the proposed algorithm using two ex-
amples. In the first, we were interested in the large-
scale, surface circulation of the northwest Pacific Ocean
estimated using surface drifters. In the second, we seek
to determine the surface current on the Nova Scotia shelf
from a large-scale hydrographic survey.

The dimension of the control vector was about 21 000
and 4500 for the data from the northwest Pacific and the
Scotian Shelf, respectively. It typically took about 3000
iterations to reach the functional minimum in the first
case, although in Fig. 1 we can see that most of the
convergence to the minimum is achieved after 1000 it-
erations. For the second case, the minimum is reached
after about 300–500 iterations.

The relatively large number [in comparison with Ra-
mamurthy and Navon (1992)] of iterations required to
reach the minimum may have several different causes.
Relative to the work of Ramamurthy and Navon, the
most probable reason for the relatively slow conver-
gence here is the different form of the minimized func-
tion (1) and the cost function utilized by Ramamurthy
and Navon (1992). They included an additional
smoothed climate velocity field that substantially en-
hances convergence to the minimum. Our numerical ex-
periments showed that the introduction of a similar ‘‘at-
tractor’’ to the climate velocity field in our algorithm
allowed us to accelerate convergence by about 10 times.

Another potential factor in the slow convergence here
is the nonlinearity of constraint (4) and the irregularity
of the weight function g3, which is chosen to be much
larger over continental land than over the ocean. The
nonlinearity can make the cost function very irregular,
while the second term is likely to slow the minimization
algorithm.
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FIG. 2. The surface velocity field in the northwest Pacific derived
by the variational method from the drifter data. Velocities are plotted
on a 18N, 18E grid.

FIG. 3. Surface velocity field in the northwest Pacific averaged
over 18N, 18E boxes.

3. Surface circulation in the northwest Pacific

a. Data

The data available for the northwest Pacific consisted
of 296 Lagrangian drifters deployed between 1987 and
1996. The initial processing of these data was accom-
plished by the National Oceanographic and Atmospheric
Administration (NOAA) Atlantic Oceanographic and
Meteorological Laboratory (AOML). Drifter data were
quality controlled and optimally interpolated to 6-h in-
terval trajectories (Hansen and Poulain 1996). As ve-
locity input, , we used the mean velocity of all driftersu*n
in 0.58N, 0.58E boxes. The constraint function F was
also defined on the same grid.

b. Choice of parameters

For the horizontal space scale L we chose the baro-
clinic Rossby radius L(x, y) 5 N(x, y) * H(x, y)/ f (y)
calculated from the Levitus (1982) climatology. Here
N(x, y) is the Brunt–Väisälä frequency, H(x, y) the ocean
depth, and f (y) the Coriolis parameter. The internal
Rossby deformation scale L changes gradually from 200
km in the southern regions to 50 km in the north and
in shallow regions. The scale U(x, y) was initially es-
timated as the mean velocity scale in 2.58N, 2.58E boxes
and interpolated onto a 0.58N, 0.58E grid by using the
optimal interpolation method with a Gaussian correla-
tion function whose correlation scale was 400 km. Then
the sequence of the application of the technique de-
scribed above was completed by updating U(x, y) in
each iteration from the previous iteration result.

The value «div(x, y) was defined as 0.1. We believe
that «data(xn, yn) is proportional to (Mij)1/2, where Mij is
the number of drifters in the i–jth box of the grid. The
values of ki were chosen to yield sdiv 5 0.11, sageos 5
0.025, and sdata 5 0.45. The values of sageos and sdiv

follow from the balance of the Coriolis and nonlinear
terms in the momentum equation and analysis of geo-
strophic and ageostrophic currents in the surface (Uch-
ida et al. 1998). In our further discussion, we will refer
to the values ki, which provide sdiv, sdata, and sageos,
corresponding to our physical understanding as ‘‘opti-
mal.’’

c. Results

The mean mixed layer velocity field computed with
the proposed variational technique (Fig. 2) contains all
the primary known features of the large-scale circulation
in the northwest Pacific. A comparison with results from
simple spatial averaging of the same data within 18N,
18E bins (Fig. 3) reveals the advantage of the proposed
algorithm. The primary currents seen in Fig. 2 are: the
Subtropical Countercurrent, flowing eastward along
228–238N east of Taiwan; the Kuroshio Current with a
set of its quasi-stationary meanders and recirculations
trapped by the shoreline shape and bottom topography;
the eastward-flowing Kuroshio Extension with its per-
turbations developing and decaying downstream; the
Tsushima Current, flowing along the west coast of Japan
after separation from the Kuroshio southwest of Kyu-
shu; the Kamchatka Current, flowing southwestward
along the east coast of the Kamchatka Peninsula; and
the subarctic front jet flowing along 408N and interact-
ing in a complex way with the Kuroshio Extension. It
is remarkable that some drifters outlining this jet orig-
inate in the Japan Sea through the Tsugaru Straight
(Maximenko et al. 1997). Very unclear or even missing
in Fig. 2 are the Kurill and Oyashio Currents. Their
absence from the data is probably explained by the lim-
ited drifter statistics north of 428N (Maximenko et al.
1997). The same insufficient data make doubtful the
flow pattern in the subpolar gyre and in the Sea of
Okhotsk. Compared to Fig. 3, the flow pattern in Fig.
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FIG. 4. The sensitivity of the variational solution to changes in the
coefficients k1 (smoothness; dashed line), k2 (divergence; thin solid
line), k3 (data; thick solid line), and k4 (nonlinearity, dash–dotted
line).

FIG. 5. The difference between the velocity fields obtained after
the 2500th and 2000th iterations of the minimization algorithm. Note
the change in the velocity scale from Figs. 2 and 3.

2 is much less noisy in the interior of the subtropical
gyre, where relatively weak currents form a number of
vortices of various size and sign. These vortices are seen
in original data and may be a surface manifestation of
multiple subgyres (Wijffels et al. 1998).

Comparison of Figs. 2 and 3 suggests that the gaps
or holes in the distribution of drifter data in space are
not critical for the interpolation. For example, an ab-
sence of the data in the region with coordinates 428N
and 1618E (Fig. 3) does not prevent a realistic eastward
current corresponding to the subarctic front jet along
408N (Fig. 2). Of course, an absence of data in a region
means that the any result within that region is not re-
liable. For this reason, we do not plot the velocity field
in the Sea of Okhotsk or the China Sea.

As described earlier, the choice of ki has some sub-
jective features. Nevertheless, moderate (up to one to
two orders of magnitude) changes in ki relative to the
‘‘optimal’’ value have small effects on the resultingoki

fields (Fig. 4). Changes in k3 (responsible for data-coun-
terparts matching) naturally had the greatest influence
on the difference final solution.

As an exploration of why our algorithm requires a
relatively large number of iterations to find the mini-
mum of the cost function, we plot the difference between
velocity fields obtained after the 2500th and 2000th it-
erations (Fig. 5). During the final stage of the mini-
mization processes, adjustment to the optimal solution
takes place mostly in the regions with relatively strong
and complicated current structure, such as the Kuroshio
Extention, and the Kamchatka and Tsushima Currents,
where the nonlinear constraint (4) is essential. Thus, it
appears, not surprisingly perhaps, that the nonlinear
terms are regulating the rate of convergence in this prob-
lem.

4. Surface circulation on the Nova Scotia shelf
a. Data

Between 20 November and 2 December 1997, a large-
scale CTD survey was conducted on the central and

eastern Scotian Shelf. The survey consisted of 95 sta-
tions and covered a region about 200 km 3 400 km,
with a typical station separation of about 25 km. Be-
cause changes in bottom density along isobaths were
small, it was possible to calculate the dynamic height
using the method of Sheng and Thompson (1996), with
velocity calculated relative to 250 m. These dynamic
heights permitted estimation of the velocity projection
perpendicular to a line connecting any two points. We
also had direct velocity measurements at five current
meters located at four mooring stations on Western Bank
(Fig. 8). These current measurements were used only
as an independent measure of interpolation quality and
were not used as data inputs to the variational calcu-
lation.

b. Choice of parameters

According to Sheng and Thompson (1996) and Grif-
fin and Thompson (1996), the circulation on the Scotian
Shelf is closely related to bottom topography and can
be described as a series of currents concentrated near
the shelf slope and the offshore marine banks. The typ-
ical subtidal velocities and their spatial correlation scale
are about U 5 15 cm s21 and L1 5 35–45 km, respec-
tively. Approximately the same value for the optimal
correlation radius R was determined by varying R to
obtain the best match between direct measurements from
the four current meters and the velocity field obtained
using the optimal interpolation method with a Gaussian
correlation function

2 2S(r) 5 exp[2(r /R )]. (13)

Figure 6 shows that the best correspondence between
the optimally interpolated field and the measured ve-
locity data, with a fairly clear and strong minimum,
occurs at a correlation length scale (R) of 33 km. These
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FIG. 6. The dispersion of the measured and optimal interpolated
velocities from the four mooring stations as a function of correlation
radius R.

values were used to define g2, g3, and g4, as in Eqs.
(6)–(9). At the same time, taking into account the steep
topography along some parts of the shelf and in order
to avoid oversmoothing, we introduced a smaller space
scale, L2 5 20 km, as the scale where the degree of
isotropy should be large. We use the scale L2 instead of
L1 in the definitions of g1 and g4 [(6)–(9)], believing
that where the topography is steep there is more influ-
ence of the dynamical constraints. The nondivergence
error «div was estimated as 0.1, and «data was defined as

n« 5 0.2 1 0.2(R /L ),data n 2 (14)

where Rn is the distance between two dynamic height
estimates (we used only pairs of points where the dis-
tance #L1).

The horizontal scale of the grid was about 7 km in
the zonal and 8 km in the meridional direction. The
optimal choice of ki provided sdiv 5 0.07, sdata 5 0.38,
and sageos 5 0.03. According to (14), we expect to obtain
sdata of about 0.3. So, a sdata value of 0.38 is probably
somewhat large. This may arise because of changes in
the bottom density along isobaths in the northeast corner
of Western Bank, hence violating one of our assump-
tions, and errors in our choice of the zero velocity level.
A similar result was found by Sheng and Thompson
(1996; see their Fig. 11) for the same area of the Scotian
Shelf.

c. Results

We calculated the velocity fields using the variational
method and the optimal interpolation method with a
Gaussian correlation function (13), R 5 33 km (Figs.
7a,b). Comparison of the two figures shows that the
variational method has some clear advantages in veloc-
ity interpolation near the coastline and around islands.

Furthermore, the absolute value of the current velocity
as calculated by the optimal interpolation method is
greater than that calculated using the variational algo-
rithm. The variational algorithm decreased some of the
unrealistic local current intensification in the northeast
part of our study area. This intensification is probably
connected with changes in bottom density along iso-
baths, leading to inconsistencies in our application of
the dynamic method in this region.

Comparisons with direct measurements from the four
current meters at 40-m (the northern mooring) and 24-
m (other moorings) depth shows the advantages of the
variational algorithm more objectively (Figs. 8a,b). The
errors between the measured and the calculated veloc-
ities are lower for the variational algorithm (44%) than
for the optimal interpolation method (55%).

Note that the velocity optimal interpolation velocity
field does not contain any information about the cir-
culation north of Western Bank. At the same time, the
variational algorithm produces currents similar to the
measured data and to currents obtained by diagnostic
calculations in the Western Bank region (Fig. 8c) ob-
tained by using a primitive equation model (Semenov
and Luneva 1996).

5. Discussion and conclusions

The variational approach (Wunsch 1996) allows cal-
culation of error estimates of the interpolated fields (i.e.,
velocity errors in our algorithm). The natural way to
obtain these errors is to calculate and invert the Hessian,

H 5 (= F 2 = F) /2du ,i,j u1du u2du j ii i
(15)

in the vicinity of the optimal state. There are a number
of ways to calculate the Hessian matrix (Schroter 1989;
Thacker 1989; Zou et al. 1992), but it is rather difficult
to invert because of the enormous number of indepen-
dent variables. It is possible, however, to calculate the
largest lmax and smallest lmin eigenvalues of the Hessian
matrix by using the iterative power method and shifted
power iteration approach (see Zou et al. 1992). Such
computations may provide useful information about the
Hessian matrix, for example, its condition number lmax/
lmin.

Following Zou et al. (1992), we estimated pairs of
(lmax, lmin) as (3.17 3 106, 2.5) and (362.81, 1.09 3
1022) for the first (northwestern Pacific) and second
(Scotian Shelf ) examples described in this paper. The
corresponding condition numbers are 1.26 3 106 and
3.32 3 104.

The FORTRAN code of our algorithm is written with
single (six decimals) precision accuracy. The smallest
eigenvalue in the first case is probably overestimated,
and is in fact indistinguishable from zero, because of
roundoff errors that develop when the shifted power
iteration method is applied. The eigenmodes associated
with the small eigenvalues of the first case are lost in
the numerical noise of the solution. In spite of the range



1448 VOLUME 19J O U R N A L O F A T M O S P H E R I C A N D O C E A N I C T E C H N O L O G Y

FIG. 7. The velocity field in the Scotian Shelf as calculated using (a) the variational method
and (b) the optimal interpolation method with the correlation function given by Eq. (13) and R
5 33 km.

of eigenvalues, the search algorithm is still able to locate
the optimal solution to the problem (see Fig. 1).

The proposed variational algorithm has some clear
advantages over the traditional optimal interpolation
method. The primary advantage is the opportunity to
explicitly include information on the dynamical char-
acteristics of the problem, through use of the constraint
functions f 1 and f 4, whose minimizations have clear
mathematical and physical meaning. We showed, with

two very different examples, the power of this technique
in representing spatial structure. In particular, applica-
tion of a constraint representing an anisotropic smooth-
ing function allows us to better represent the detailed
features of jets both on the shelf and in the open ocean.

Within this anisotropic interpolation problem it is pos-
sible to include terms to represent previously known
space scales. The algorithm also permits additional dy-
namical information to be incorporated into the solution.
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FIG. 8. (a), (b) Same as in Fig. 5, but for the Western Bank region. Also shown is the location of four mooring stations and the
dispersion of measured and calculated velocities. (c) The result of diagnostic calculations with a primitive equation model.

The great practical difficulty lies in the definition of the
weight functions gi. As for the constraints, these weights
could have been defined differently, although we found
that the final results depend only weakly on the choice
of the weighting functions gi.
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